Solutions to Mock JEE MAIN - 2 | JEE - 2024

Physics

SINGLE CHOICE

1.(B) Since, potential V is same for all points of the sphere. Therefore, we can calculate its value at the centre of the sphere.

$$\therefore V = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r} + V'$$

V' = potential at centre due to induced charges = 0 (because net induced charge will be zero)

$$\therefore V = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r}$$

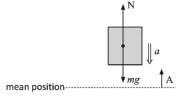
2.(A)
$$A_R = \sqrt{\left(\sqrt{3}\right)^2 + 1^2} = 2$$
 $\phi = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3};$

So equation of SHM is:
$$y = 2\sin\left(\omega t + \frac{\pi}{3}\right)$$

Maximum chance of break off is at extreme position. $mg - N = m\omega^2 A$

For breakoff
$$N = 0$$
 \Rightarrow $\omega = \sqrt{\frac{g}{A}} = \sqrt{\frac{g}{2}}$

Also for
$$y = A = 2$$
 $\Rightarrow \omega t + \frac{\pi}{3} = \frac{\pi}{2} \Rightarrow t = \frac{\pi}{6\omega} = \frac{\pi}{6}\sqrt{\frac{2}{g}}$



3.(B) V = IR

$$\Rightarrow R = \frac{V}{I} = \frac{U}{qI} = \frac{U}{I^2 t} = \frac{\left(ML^2 T^{-2}\right)}{\left\lceil A^2 \right\rceil \left[T\right]} = \left[ML^2 T^{-3} A^{-2}\right]$$

$$\Rightarrow C = \frac{Q}{V} = \frac{It}{U/q} = \frac{I^2 t^2}{U} = \frac{\left[A^2\right] \left[T^2\right]}{\left[ML^2 T^{-2}\right]} = \left[M^{-1} L^{-2} T^4 A^2\right]$$

$$\Rightarrow F = iBl$$

$$B = \frac{F}{il} = \frac{\left[MLT^{-2}\right]}{\left[A\right]\left[L\right]} = \left[MT^{-2}A^{-1}\right]$$

$$\Rightarrow U = \frac{1}{2}Li^2$$

$$L = \frac{U}{i^2} = \frac{\left\lfloor ML^2T^{-2} \right\rfloor}{\left\lceil A^2 \right\rceil} = \left\lceil ML^2T^{-2}A^{-2} \right\rceil$$

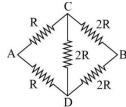
4.(B)
$$I = \frac{100 \times 10^{-3}}{0.5} A = 0.2A$$

$$R = \frac{1}{0.2}\Omega = 5\Omega.$$

5.(B) Comparing the given equation with
$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$
, we get $\tan \theta = \sqrt{3}$ and $u = 2$ m/s.

6.(A)
$$\frac{1}{\lambda} = R \left[1 - \frac{1}{n^2} \right]$$
or
$$\frac{1}{\lambda R} = 1 - \frac{1}{n^2} \Rightarrow \frac{1}{n^2} = 1 - \frac{1}{\lambda R}$$
or
$$\frac{1}{n^2} = \frac{\lambda R - 1}{\lambda R} \Rightarrow n^2 = \frac{\lambda R}{\lambda R - 1}$$
or
$$n = \left(\frac{\lambda R}{\lambda R - 1} \right)^{1/2}.$$

7.(C) It is wheat stone bridge

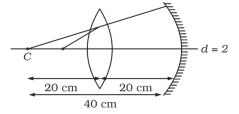


8.(A) Equating pressures,
$$\frac{F}{\pi R^2} = \frac{1200}{\pi [20R]^2} \Rightarrow F = 3kgf$$

$$\frac{1}{F_M} = \frac{1}{f_m} - \frac{2}{f_1}, \frac{1}{F_M} = 0 - \frac{2}{40} F_M = -20$$

For lens
$$v = \frac{uf}{u+f'} v = \frac{-10 \times 20}{-10 + 20} = -20$$

So, this position has to be centre of curvature of mirror in order for the ray to retrace its path so, d = 40 - 20 = 20cm



10.(B)
$$T_1 = 27 + 273 = 300K$$

 $T_2 = 127 + 273 = 400K$
 $\frac{E_2}{E_1} = \frac{T_2}{T_1} \Rightarrow E_2 = \frac{4}{3} \times 6.2 \times 10^{-21} J = 8.27 \times 10^{-21} J$

11.(D)
$$\frac{a_m}{g} = \frac{GM_e / R_m^2}{GM_e / R_e^2} \text{ or } \frac{a_m}{g} = \frac{R_e^2}{R_m^2} \text{ or } a_m = \left[\frac{R_e}{R_m}\right]^2 g$$

12.(B)
$$U = \frac{\frac{3}{2}RT + \frac{6}{2}RT}{2} = \frac{9}{4}RT; C_v = \frac{dU}{dT} = \frac{9}{4}R$$

 $C_p = C_v + R = \frac{13}{4}R \Rightarrow \frac{C_p}{C} = \frac{13}{9} = 1.44$

14.(C)
$$\lambda_{\min} = \frac{hc}{eV}$$

15.(B)
$$\beta = \frac{3}{10} = 0.3cm$$
$$\beta = \frac{D\lambda}{d}$$

$$\therefore 0.3 = \frac{300 \times 5100 \times 10^{-8}}{d} \quad \text{or} \quad d = \frac{300 \times 5100 \times 10^{-8}}{0.3} cm$$

$$=51\times10^{-3}$$
 cm $=51\times10^{-2}$ mm $=0.51$ mm

16.(A)
$$\vec{u} = 10\hat{i} \ m/s$$

$$\vec{a} = 2\,\hat{j}\,\,m\,/\,s^1$$

$$\vec{v} = \vec{u} + \vec{a}t$$

$$\vec{v} = 10\hat{i} + 2\hat{j} \times 5 = (10\hat{i} + 10\hat{j})m/s$$

$$v = 10\sqrt{2}m/s = 14m/s$$

17.(C)
$$eV_s = hv - \phi_0$$

$$eV_s' = hv' - \phi_0$$

$$e(V_s' - V_s) = hv' - hv = \left(\frac{12375}{3600} - \frac{12375}{4000}\right)eV$$

$$V_s' - V_s = 3.44 - 3.09 = 0.35V$$

18.(B) The emf induced across the rod AB is

$$e = Bv_{\perp}l$$

Here, $v_{\perp} = v \sin 30^{\circ} = \text{component of velocity perpendicular to length}$

$$\therefore e = Bvl \sin 30^{\circ}$$

$$=(2)(4)(1)(\frac{1}{2})=4V$$

The free electrons of the rod shift towards right due to the force $q(\vec{v} \times \vec{B})$. Thus, the left side of the rod is at higher potential.

or
$$V_A - V_B = 4V$$

19.(C) Force on block = $20 \times 2N = 40N$

Frictional force on block = $0.15 \times 20 \times 10N = 30N$

Net force = 10 N

Acceleration =
$$\frac{10N}{20kg} = \frac{1}{2}m s^{-2}$$

Now,
$$4 = 0 \times t + \frac{1}{2} \times \frac{1}{2} t^2$$
 or $t = 4s$

Let us calculate the distance travelled by the truck.

$$x = 0 \times 4 + \frac{1}{2} \times 2 \times 4 \times 4 = 16m$$

20.(B) Coefficient of x is angular wave number k of
$$\frac{2\pi}{\lambda}$$
.

Thus,
$$k = \frac{2\pi}{\lambda} = \pi \times 10^3$$

$$\lambda = 2 \times 10^{-3} m$$

NUMERICAL TYPE

1.(275)
$$P = E_v I_v \cos \phi$$

$$P = E_{v} \frac{E_{v}}{Z} \frac{R}{Z}$$

or
$$P = \frac{E_v^2 R}{Z^2} = \frac{110 \times 110 \times 11}{22 \times 22} W = 275 W.$$

2.(9)
$$v = \frac{1}{2l} \sqrt{\frac{T}{m}} \text{ or } v \propto \frac{\sqrt{T}}{l} \text{ or } \sqrt{T} \propto vl$$

$$\therefore \sqrt{\frac{T_1}{T_2}} = \frac{100l}{75(2l)} = \frac{2}{3} \text{ or } \frac{T_1}{T_2} = \frac{4}{9}$$

3.(3)
$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \text{ or } \frac{1}{\lambda} = R \left[\frac{1}{4} - \frac{1}{16} \right]$$

$$\frac{1}{\lambda} = R \left\lceil \frac{4-1}{16} \right\rceil \text{ or } \lambda = \frac{16}{3R}$$

4.(6) Given,
$$q = 1200C$$
, $t = 20$ minute, $A = 25 \text{ } mm^2 = 25 \times 10^{-6} m^2$

$$n = 6.0 \times 10^{22}$$
 electrons/ $cm^3 = 6.0 \times 10^{22} \times 10^6 / m^3$

Drift velocity $v_d = ?$

We know that,
$$I = \frac{q}{t} = \frac{1200}{20 \times 60} = 1A$$

Drift velocity,
$$v_d = \frac{I}{neA}$$

$$v_d = \frac{1}{6 \times 10^{22} \times 10^6 \times 25 \times 10^{-6} \times 1.6 \times 10^{-19}}$$

$$v_d = \frac{4.16 \times 10^{-3}}{10^3}$$

$$v_d = 4.2 \times 10^{-6} m/s$$

5.(2880) Energy per unit volume
$$=\frac{1}{2} \times \text{stress} \times \text{strain} = \frac{1}{2} (Y\alpha t) (\alpha t) = \frac{1}{2} Y\alpha^2 t^2$$

$$= \frac{10^{11} \times 144 \times 10^{-12} \times 400}{2} J m^{-3}$$

$$=288\times10J\ m^{-3}=2880\ J\ m^{-3}$$

6.(5)
$$a = \frac{g \sin \theta}{1 + \frac{K^2}{R^2}} = \frac{g \sin 30^\circ}{1 + \frac{2}{5}}$$
 or $a = \frac{5}{7}g \times \frac{1}{2} = \frac{5g}{14}$

- 7.(4) Applying conservation of momentum, $1 \times 4 = 2 \times v$ or $v = 2ms^{-1}$ Loss of kinetic energy $= \frac{1}{2} \times 1 \times 4 \times 4 \frac{1}{2} \times 2 \times 2 \times 2 = (8-4)J = 4J$
- 8.(9) Potential difference between A and B = 6 volts. The condensers $2 \mu F$ and $5 \mu F$ are in parallel. Their effective capacitance, $C = 2 + 5 = 7 \mu F$.

The capacitance between A and B is given by $C' = \frac{C \times 3}{C+3} = \frac{7 \times 3}{7+3} = \frac{21}{10} \mu F$

Total charge
$$Q = CV = \frac{21}{10} \times 6 = \frac{63}{5} \mu C$$

Total potential difference across $3\mu F$ is

$$V_1 = \frac{Q}{3} = \frac{63}{5} \times \frac{1}{3} = \frac{21}{5}$$
 volts

$$V_2 = 6 - \frac{21}{5} = \frac{9}{5}V$$

So, the charge on $5 \mu F$ condenser is

$$Q = 5 \times V_2 = 5 \times \frac{9}{5} = 9\mu C$$

9.(5)
$$\frac{\mu_1}{-u} + \frac{\mu_2}{v} = \frac{\mu_2 - \mu_1}{R}$$

$$\frac{1}{-(-x)} + \frac{1.5}{x} = \frac{1.5 - 1}{R}$$

$$\frac{1}{x} + \frac{3}{2x} = \frac{1}{2R}$$

$$\frac{5}{2x} = \frac{1}{2R} \quad or \ x = 5R$$

10.(42) Find at a point x from the centre of a current carrying loop on the axis is

$$B = \frac{\mu_0}{4\pi} \cdot \frac{2M}{x^3} = \frac{10^{-7} \times 2 \times 2.1 \times 10^{-25}}{\left(10^{-10}\right)^3}$$

$$=4.2\times10^{-32}\times10^{30}=4.2\times10^{-2}W$$

Chemistry

SINGLE CHOICE

1.(A) The reaction that takes place is $NaCl + AgNO_3 \longrightarrow AgCl \downarrow + NaNO_3$

∴ 143.5g of AgCl is produced from 58.5g NaCl

$$\therefore$$
 14g of AgCl will be produced from $\frac{58.5 \times 14}{143.5} = 5.70$ g NaCl

5.70g is the amount of NaCl in common salt; % purity = $\frac{5.70}{6} \times 100 = 95\%$

2.(D)
$$CH_3 \xrightarrow{H^+} CH_3 \xrightarrow{Br^-} Br$$

3.(B)
$$HO = \frac{O}{C - CH_2 - C}H - CHO$$
 $3 - \text{formyl} - 4 - \text{oxo butanoic acid}$ $3 - \text{formyl} - 4 - \text{oxo butanoic acid}$

4.(B)
$$w = -nRT \ln \frac{V_2}{V_1}$$

$$w = -2 \times 8.314 \times 10^{-3} \times 300 \ln \frac{40}{4},$$

$$w = -11.488kJ$$

5.(C) Phenolphthalein is a weak organic acid and represented by Ph-H

$$PhH \rightleftharpoons Ph^{(-)} + H^{(+)}$$

Colorless pink colour

Statement I- False

Statement II- False

6.(A) In redox titration, KMnO₄ act as self indicator and because of hydrolysis of anion, pH at equivalence point is greater than 7.

7.(C)
$$NH_2$$
 NO_2 Ac_2O Py NO_2 Ac_2O Py NO_2 $NO_$

- **8.(B)** More activation energy, slow reaction rate.
- **9.(B)** According to Lewis, structure with complete octet of most of the 2nd period element is the most stable.
- **10.(B)** More percentage s-character means more electronegativity, more bond angle, less size and less energy.

11.(D)
$$\left[\text{NiCl}_4 \right]^{2-} = \text{sp}^3 \left(4\text{s} + 4\text{p}_x + 4\text{p}_y + 4\text{p}_z \right)$$

$$\left[\text{Ni} \left(\text{NH}_3 \right)_6 \right]^{2+} = \text{sp}^3 \text{d}^2 \left(4\text{s} + 4\text{p}_x + 4\text{p}_y + 4\text{p}_z + 4\text{d}_{x^2 - y^2} + 4\text{d}_{z^2} \right)$$

$$\left[\text{Ni} \left(\text{CN} \right)_4 \right]^{2-} = \text{dsp}^2 \left(3\text{d}_{x^2 - y^2} + 4\text{s} + 4\text{p}_x + 4\text{p}_y \right)$$

$$\left[\text{Fe} \left(\text{CN} \right)_6 \right]^{3-} = \text{d}^2 \text{sp}^3 \left(3\text{d}_{x^2 - y^2} + 3\text{d}_{z^2} + 4\text{s} + 4\text{p}_x + 4\text{p}_y + 4\text{p}_z \right)$$

12.(A)

13.(C) Correct reducing character is $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$.

14.(D) IE
$$\rightarrow$$
 Mg > Al
 $1s^2 2s^2 2p^6 3s^2$ $1s^2 2s^2 2p^6 3s^2 3p^1$

Due to stable configuration of Mg.

Size : $Mg^{2+} > Al^{3+}$

More positive charge means more Z_{eff} so size decreases.

15.(A)

16.(D) Magnetic moment =
$$\sqrt{n(n+2)}BM$$

n: Number of unpaired e

As atomic number increases in d-block element number of unpaired e⁻ first increases upto 6 then decreases

- 17.(C) Carboxylic acids are more acidic than alcohol. CCl_3 at α -position has greater E.W. effect than NO_2 at β -position. Carbonyl F.G at β -position has lesser E.W. effect than NO_2 group.
- **18.(A)** More the electron withdrawing groups at ortho and para position more is the reactivity.
- **19.(B)** For f-block elements common O.S. is +3.

20.(A)
$$CCl_3$$
— C — H + Cl_3 — C — C — C 1

Chlorobenzene

(X)

 Cl_3 — C — C 1

 Cl_4 — C 1

 C 1

NUMERICAL TYPE

1.(6) Let solubility of Ag_2CO_3 in presence of Na_2CO_3 is S

$$Ag_2CO_3(s) \Longrightarrow 2Ag^+(aq.) + CO_3^{2-}(aq.)$$

 $(S+0.1)$

$$\mathbf{K}_{\mathrm{sp}} = \left[\mathbf{A}\mathbf{g}^{+}\right]^{2} \left[\mathbf{C}\mathbf{O}_{3}^{2-}\right]$$

$$\Rightarrow 4 \times 10^{-13} = (2S)^2 \times 0.1$$

$$\Rightarrow$$
 S = 10^{-6} \Rightarrow x = 6

2.(0) For zero order reaction, $t_{1/2} \propto \left[\text{initial conc.} \right]^1$

3.(3) Angular node =
$$\ell$$

$$7s \Rightarrow A.N = 0$$

$$7p \Rightarrow A.N = 1$$

$$6s \Rightarrow A.N = 0$$

$$8p \Rightarrow A.N = 1$$

$$8d \Rightarrow A.N = 2$$

4.(1)
$$Q_v = 1.25 \times 4 = 5$$

$$Q_v = 5 = \frac{x}{80} \times 400 \implies x = 1$$

$$5.(3)$$
 SF₃Cl, XeO₂F₂, SF₄

6.(1)
$$AB_2(aq) \xrightarrow{} A^{2+}(aq) + 2B^-(aq)$$

 $S-x$

$$K_{sp} = 2.56 \times 10^{-7} = 4x^3; x = 4 \times 10^{-3} M$$

$$\Delta T_{b} = K_{b} (S + 2x)$$

$$6.5 \times 10^{-3} = 0.5 (S + 2 \times 4 \times 10^{-3}); S = 5 \times 10^{-3}$$

Concentration of AB_2 (aq) = $S - x = 5 \times 10^{-3} - 4 \times 10^{-3} = 1 \times 10^{-3} M$

- **7.(9)** Sum of oxidation state = 5 + 0 + 4 = 9
- 8.(2) $\left[Pt(SCN)_2(OX)_2 \right]^{x-}$

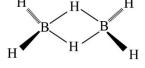
Number of unpaired electron = 0

So, Pt must be in +4 oxidation state $\left[Pt(SCN)_2(OX)_2 \right]^{x-}$

$$\Rightarrow 4 + (-6) = -x$$

$$\Rightarrow x = 2$$

- **9.(2)** At cathode Reduction takes place so it may gain weight during reaction when metal is deposited after reduction. (A and B statements are correct)
- **10.**(6)



Mathematics

SINGLE CHOICE

1.(C)
$$(a-2)+ib = -\frac{(1+2\cos\theta)+2i\sin\theta}{(2+\cos\theta)+i\sin\theta}$$

$$\Rightarrow (a-2)^2+b^2 = \frac{(1+2\cos\theta)^2+4\sin^2\theta}{(2+\cos\theta)^2+\sin^2\theta} = \frac{5+4\cos\theta}{5+4\cos\theta} = 1$$

$$\lambda = 1$$

$$\therefore -1 \le 1-2\sin\alpha \le 3$$
Range $(-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$

2.(B) Coordinates of any point Q on the given line are (2r+1, -3r-1, 8r-10).

So the direction ratios of PQ are 2r, -3r-1, 8r-10.

Now PQ is perpendicular to the given line.

if
$$2(2r)-3(-3r-1)+8(8r-10)=0$$

$$\Rightarrow$$
 $77r - 77 = 0 \Rightarrow r = 1$

and the coordinates of Q, the foot of the perpendicular from P on the line are (3,-4,-2).

Let R(a,b,c) be the reflection of P in the given lines then Q is the mid-point of PR

$$\Rightarrow \frac{a+1}{2} = 3, \frac{b}{2} = -4, \frac{c}{2} = -2$$

$$\Rightarrow$$
 $a = 5, b = -8, c = -4$

and the coordinate of the required point are (5, -8, -4).

3.(D) As
$$|A| = 0$$
, we get $ad - bc = 0$

Also,
$$A^2 - (a+d)A = A[A - (a+d)I]$$

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -d & b \\ c & -a \end{pmatrix} = \begin{pmatrix} -ad+bc & ab-ba \\ -cd+cd & bc-ad \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Thus,
$$-kI = 0 \Rightarrow k = 0$$

4.(C)
$$\vec{a} \times (2i+3j+4k) = (2i+3j+4k) \times \vec{b} = -\vec{b} \times (2i+3j+4k)$$

 $\Rightarrow (\vec{a}+\vec{b}) \times (2i+3j+4k) = 0$
 $\Rightarrow (\vec{a}+\vec{b})$ is parallel to $(2i+3j+4k) = 0$
 $\Rightarrow (\vec{a}+\vec{b}) = \alpha(2i+3j+4k)$ for some $\alpha \in R$
 $\Rightarrow |\vec{a}+\vec{b}| = |\alpha|\sqrt{4+9+16}$
 $\Rightarrow \alpha = \pm 1$
Also, $(\vec{a}+\vec{b}) \cdot (-7\hat{i}+2\hat{j}+3\hat{k})$

$$= \alpha \left(2\hat{i} + 3\hat{k} + 4\hat{k} \right) \cdot \left(-7\hat{i} + 2\hat{j} + 3\hat{k} \right)$$
$$= \alpha \left(-14 + 6 + 12 \right) = 4\alpha$$

Taking $\alpha = 1$, we get one of the possible values as 4.

5.(A) As we are interested in coefficient of t^{50} , we shall ignore all the term with exponent more than 50. Thus, we can write given expression as

$$\left(1+\frac{25}{C_1}t^2+...+\frac{25}{C_{25}}t^{50}\right)\times\left(1+t^{25}+t^{40}+t^{45}+t^{47}\right)$$

As all the terms in the first expression have even exponent we can ignore t^{25} , t^{45} and t^{47} too. Thus, coefficient of t^{50} in (1) = ${}^{25}C_{25} + {}^{25}C_5 = 1 + {}^{25}C_5$

6.(A) Equation of the circle C is $(x-2)^2 + (y-1)^2 = r^2$

$$\Rightarrow x^2 + y^2 - 4x - 2y + 5 - r^2 = 0$$

Equation of the common chord is $(x^2 + y^2 - 4x - 2y + 5 - r^2) - (x^2 + y^2 - 2x - 6y + 6) = 0$

$$\Rightarrow 2x-4y+r^2+1=0$$

If it is a diameter of the second circle, it passes through the centre (1, 3) of the circle.

So
$$2-4\times 3+r^2+1=0 \Rightarrow r^2=9 \Rightarrow r=3$$

7.(A) Let *d* be the common difference. Then $\log_y x = 1 + d \Rightarrow x = y^{1+d}$

$$\log_z y = 1 + 2d \Rightarrow y = z^{1+2d}$$

and
$$-15 \log_x z = 1 + 3d \Rightarrow z = x^{-(1+3d)/15}$$

$$x = y^{1+d} = z^{(1+2d)(1+d)}$$

$$= x^{-(1+d)(1+2d)(1+3d)/15}$$

$$\Rightarrow (1+d)(1+2d)(1+3d) = -15$$

$$\Rightarrow 6d^3 + 11d^2 + 6d + 16 = 0$$

$$\Rightarrow (d+2)(6d^2-d+8) = 0 \Rightarrow d = -2$$

[Note that $6d^2 - d + 8 = 0$ has complex roots]

$$\therefore$$
 $x = y^{1+d} = y^{-1}, y = z^{1-4} = z^{-3}$ and $x = (z^{-3})^{-1} = z^3$.

8.(D)
$$f(0) = \lim_{x \to 0} f(x)$$

$$= \lim_{x \to 0} \frac{(1+x)\log(1+x) - x}{x^2} \left(\frac{0}{0} form\right)$$

$$= \lim_{x \to 0} \frac{\log(1+x)+1-1}{2x}$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{\log(1+x)}{x} = \frac{1}{2}$$

$$S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$$
 (As given expression is an AGP)
$$= \frac{1}{1/2} + \frac{1/2}{1/4} = 4$$

9.(B) (M, M), (A, A), (T, T), E, H, I, C, S

We can arrange 4 distinct letters in 8P_4 ways, 2 identical and 2 distinct in $({}^3C_1)({}^7C_2)\frac{4!}{2!}$ ways and

2 pairs of identical letters in $\binom{3}{2} \frac{4!}{2!2!}$ ways

10.(D) If A denotes the coefficient matrix, then $|A| = \lambda^2 (\lambda + 3)$

For $\lambda = 0$ and $\lambda = -3$, the system is inconsistent.

$$\tan \theta = 0 \qquad \tan \theta = -1$$

$$\Rightarrow \theta = 0, \pi, 2\pi \qquad \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$$

$$S = \frac{11\pi}{2}$$

11.(A) We have $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

$$\Rightarrow \cos^{2} \alpha + \cos^{2} \left(\frac{\pi}{2} - \alpha\right) + \cos^{2} \gamma = 1$$

$$\Rightarrow \cos^{2} \alpha + \sin^{2} \alpha + \cos^{2} \gamma = 1$$

$$\Rightarrow \cos^{2} \gamma = 0 \Rightarrow \cos \gamma = 0$$
So $(\cos \alpha + \cos \beta + \cos \gamma)^{2} = (\cos \alpha + \sin \alpha)^{2} = 1 + 2\sin \alpha \cos \alpha$

So
$$(\cos \alpha + \cos \beta + \cos \gamma) = (\cos \alpha + \sin \alpha) = 1 + 2\sin \alpha \cos \alpha$$

 $=1+\sin 2\alpha$

12.(C) Suppose the bisector of angle A meets BC at D. Then AD divides BC in the ratio AB : AC. So, P.V. of D is given by

$$\frac{\left|\overline{AB}\right|\left(2\hat{i}+5\hat{j}+7\hat{k}\right)+\left|\overline{AC}\right|\left(2\hat{i}+3\hat{j}+4\hat{k}\right)}{\left|\overline{AB}\right|+\left|\overline{AC}\right|}$$

But
$$\overrightarrow{AB} = -2\hat{i} - 4\hat{j} - 4\hat{k}$$

and
$$\overrightarrow{AC} = -2\hat{i} - 2\hat{j} - \hat{k}$$

$$\Rightarrow$$
 $|\overrightarrow{AB}| = 6 \text{ and } |\overrightarrow{AC}| = 3$

Therefore, P.V. of D is given by

$$\frac{6(2\hat{i}+5\hat{j}+7\hat{k})+3(2\hat{i}+3\hat{j}+4\hat{k})}{6+3} = \frac{1}{3}(6\hat{i}+13\hat{j}+18\hat{k})$$

13.(D)
$$\left(\frac{1}{x^2} - x^3\right)^n$$

General term
$$T_{r+1} = \frac{n!}{r!(n-r)!} (-1)^r x^{5r-2n}$$

If
$$5r - 2n = 5$$
, then $5r = 2n + 5$ or $r = \frac{2n}{5} + 1$

If
$$5r - 2n = 10$$
, then $5r = 2n + 10$ or $r = \frac{2n}{5} + 2$

$$x^5$$
 and x^{10} terms occurs if $n = 5k$

Given that sum of x^5 and x^{10} is zero.

$$\Rightarrow \frac{5k!}{(2k+1)!(3k-1)!} - \frac{5k!}{(2k+2)!(3k-2)!} = 0$$

or
$$\frac{1}{3k-1} - \frac{1}{2k+2} = 0$$

or
$$k = 3 \Rightarrow n = 15$$

$$\left(x^2 + \frac{1}{x^2} + 2\right)^{15}$$

$$\left(x+\frac{1}{x}\right)^{30}$$

Term independent of x is 16th term, $T_{16} = {}^{30}C_{15} = \frac{30!}{(15!)^2}$

14.(A) Reflexive but not symmetric

$$\therefore x^2 - 3xy + 2y^2 = 0$$

$$\Rightarrow x^2 - xy - 2xy + 2y^2 = 0$$

$$\Rightarrow x(x-y)-2y(x-y)=0$$

$$\Rightarrow (x-2y)(x-y)=0$$

$$\Rightarrow x = y \text{ or } x = 2y$$

Now, : in R all ordered pairs (x, x) are present

:. It is reflexive

Now,
$$(4, 2) \in R$$
 as $4 = 2(2)$

but
$$(2, 4) \notin R$$
 as $2 \neq 2(4)$

:. It is not symmetric

Also
$$(4, 2)$$
 and $(2, 1) \in R$ but $(4, 1) \notin R$

:. It is not transitive

15.(C)
$$\frac{{}^{20}C_2 + {}^{19}C_2}{{}^{39}C_2} = \frac{19}{481}$$

Number of APs = Number of ways of selecting two numbers whose sum is even.

16.(B)
$$\int \left[a^x \ln x + \underbrace{a^x \ln a}_{II} \cdot \underbrace{x(\ln x - 1)}_{I} \right] dx$$

$$= \int a^x \cdot \ln x \, dx + \left[x(\ln x - 1)a^x - \int \left[x \cdot \frac{1}{x} + (\ln x - 1) \right] a^x \right] dx$$

$$= \int a^x \cdot \ln x \, dx + \left[x(\ln x / e) \right] a^x - \int (\ln x) a^x dx$$

- 17.(A) $(2\sin^2 91^\circ 1)(2\sin^2 92^\circ 1)...(2\sin^2 180^\circ 1)$, In this product there exists a factor $(2\sin^2 135^\circ - 1)$, which is equal to zero. Thus, the product of all terms is zero.
- **18.(B)** Let $P = (at_1^2, 2at_1)$ and $Q = (at_2^2, 2at_2)$.

Equation of AP is $y = \frac{2}{t_1} x_1$.

$$\Rightarrow R \equiv \left(-a, -\frac{2a}{t_1}\right)$$

Similarly,
$$T \equiv \left(-a, \frac{-2a}{t_2}\right)$$

Slope of RS =
$$\frac{\frac{(-2a)}{t_1}}{-2a} = \frac{1}{t_1}$$

Slope of TS =
$$\frac{\frac{(-2a)}{t_2}}{\frac{t_2}{-2a}} = \frac{1}{t_2}$$

Now,
$$\left(\frac{1}{t_1}\right) \times \left(\frac{1}{t_2}\right) = \frac{1}{t_1 t_2} = -1$$

19.(D) Clearly BC + AC should be min (for perimeter P to be minimum) Take image of A in y = 4, say it is A'(2,7)

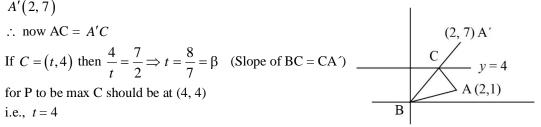
$$\therefore$$
 now AC = $A'C$

If
$$C = (t, 4)$$
 then $\frac{4}{t} = \frac{7}{2} \Rightarrow t = \frac{8}{7} = \beta$ (Slope of BC = CA')

i.e.,
$$t = 4$$

$$\Rightarrow \alpha = 4$$

$$\therefore = 6\alpha + 21\beta = 24 + 24 = 48$$



20.(D)
$$\frac{-}{x_{new}} = \frac{4}{3} \frac{-}{x}$$

From given information
$$x_{new} = \frac{nx + 2kx}{n+k} = \frac{4}{3}x$$

 $\Rightarrow 3n+6k = 4n+4k$

$$\Rightarrow 2k = n$$

$$\Rightarrow \frac{k}{n} = 0.5$$

NUMERICAL TYPE

1.(997) Given,
$$f(x) = \frac{9^x}{9^x + 3}$$
 ...(i)

$$\Rightarrow f(1-x) = \frac{9^{1-x}}{9^{1-x} + 3}$$

$$\Rightarrow f(1-x) = \frac{\frac{9}{9^x}}{\frac{9}{9^x} + 3} = \frac{9}{9 + 3 \cdot 9^x}$$

$$f(1-x) = \frac{9}{3(3+9^x)}$$
 ...(ii)

On adding Eqs. (i) and (ii), we get

$$f(x) + f(1-x) = \frac{9^x}{9^x + 3} + \frac{9}{3(3+9^x)}$$

$$= \frac{3 \cdot 9^x + 9}{3(9^x + 3)} = \frac{3(9^x + 3)}{3(9^x + 3)}$$

:.
$$f(x) + f(1-x) = 1$$
 ...(iii)

Now, putting
$$x = \frac{1}{1996}, \frac{2}{1996}, \frac{3}{1996}, \dots, \frac{998}{1996}$$
 in Eq. (iii),

we get
$$f\left(\frac{1}{1996}\right) + f\left(\frac{1995}{1996}\right) = 1$$

$$\Rightarrow f\left(\frac{2}{1996}\right) + f\left(\frac{1994}{1996}\right) = 1$$

$$\Rightarrow f\left(\frac{3}{1996}\right) + f\left(\frac{1993}{1996}\right) = 1$$

$$\Rightarrow f\left(\frac{997}{1996}\right) + f\left(\frac{999}{1996}\right) = 1$$

$$\Rightarrow f\left(\frac{998}{1996}\right) + f\left(\frac{998}{1996}\right) = 1$$

$$\Rightarrow f\left(\frac{998}{1996}\right) = \frac{1}{2}$$

On adding all the above expressions, we get

$$k = f\left(\frac{1}{1996}\right) + f\left(\frac{2}{1996}\right) + \dots + f\left(\frac{1995}{1996}\right)$$
$$= \underbrace{(1+1+1,\dots,+1)}_{997 \text{ times}} + \frac{1}{2}$$

$$k = 997 + \frac{1}{2}$$

$$\therefore \left| k - \frac{1}{2} \right| = \left| 997 + \frac{1}{2} - \frac{1}{2} \right| = 997$$

2.(6)
$$2(x_2x_3 + x_3x_1 + x_1x_2) = (x_1 + x_2 + x_3)^2 - (x_1^2 + x_2^2 + x_3^2) = -2$$

$$x_1^3 + x_2^3 + x_3^3 - 3x_1x_2x_3$$

$$= (x_1 + x_2 + x_3)(x_1^2 + x_2^2 + x_3^2 - x_2x_3 - x_3x_1 - x_1x_2)$$

$$= (2)(6+1) = 14$$

$$\Rightarrow x_1x_2x_3 = -2.$$

Equation whose roots are x_1, x_2, x_3 is $x^3 - 2x^2 - x + 2 = 0 \Rightarrow x = 2, 1, -1$.

Thus,
$$(x_2 - x_3)(x_3 - x_1)(x_1 - x_2) = 6$$
.

3.(7) Midpoint of the line segment is
$$\left(\frac{1-3}{2}, \frac{2+6}{2}, \frac{6+2}{2}\right) \equiv \left(-1, 4, 4\right)$$

Parallel vector to the required line = $(-1+6)\hat{i} + (4-2)\hat{j} + (4-4)\hat{k} = 5\hat{i} + 2\hat{j} + 0\hat{k}$

Hence, equation of the line is $\frac{x+6}{5} = \frac{y-2}{2} = \frac{z-4}{0}$

$$\Rightarrow l=5, m=2, n=0$$

4.(4)
$$(-\infty, -3] \cup (-2, -1) \cup (2, \infty)$$

$$\log_{(|x|-1)}(x^2+4x+4) \ge 0$$

Case 1:
$$0 < |x| - 1 < 1$$

i.e.,
$$1 < |x| < 2$$
, then $0 < x^2 + 4x + 4 \le 1 \Rightarrow x^2 + 4x + 3 \le 0 & (x+2)^2 \ne 0$

$$\Rightarrow$$
 $-3 \le x \le -1 \& x \ne -2$

So,
$$x \in (-2, -1)$$

Case 2:
$$|x|-1 > 1$$

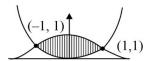
i.e.,
$$|x| > 2$$

$$x^2 + 4x + 4 \ge 1 \Rightarrow (x+1)(x+3) \ge 0 \Rightarrow x \in (-\infty, -3] \cup [-1, \infty]$$

$$\Rightarrow x \in (-\infty, -3] \cup (2, \infty)$$

Hence, domain is $(-\infty, -3] \cup (-2, -1) \cup (2, \infty)$

5.(3) Drawing graphs of
$$y = x^2$$
 and $y = \frac{2}{x^2 + 1}$



For points of intersection, $x^2 = \frac{2}{x^2 + 1} \Rightarrow x^4 + x^2 - 2 = 0$

$$x^2 = 1 \Longrightarrow x = \pm 1$$

Required area
$$=2\int_{0}^{1} \left(\frac{2}{1+x^2}-x^2\right) dx = \left(\pi - \frac{2}{3}\right) sq$$
. units

$$K_1 = 1, K_2 = 2 \Longrightarrow K_1 + K_2 = 3$$

6.(9)
$$a-d$$
, a , $a+d$, $a-d+30$

If last three terms are in G.P. $(a+d)^2 = a(a-d+30)$

$$\Rightarrow a = \frac{d^2}{30 - 3d}$$

 \Rightarrow For a to be integer d = 9

7.(4) The given equation can be written as
$$\frac{dy}{dx} - y \frac{\phi'(x)}{\phi(x)} = \frac{-y^2}{\phi(x)}$$

$$\Rightarrow -\frac{1}{y^2}\frac{dy}{dx} + \frac{1}{y}\frac{\phi'(x)}{\phi(x)} = \frac{1}{\phi(x)}$$

Put
$$\frac{1}{y} = u$$
 so that $-\frac{1}{y^2} \frac{dy}{dx} = \frac{du}{dx}$. Now (1) becomes $\frac{du}{dx} + u \frac{\phi'(x)}{\phi(x)} = \frac{1}{\phi(x)}$

This is a linear equation in u so its integrating factor is $e^{\int \frac{\phi'(x)}{\phi(x)} dx} = e^{\log \phi(x)} = \phi(x)$

Multiplying both sides by the integrating factor, we have

$$\frac{d}{dx} \left[u\phi(x) \right] = 1 \Rightarrow u\phi(x) = x + \text{constant} \Rightarrow y = \frac{\phi(x)}{x + C}$$

$$\Rightarrow$$
 $y(1) = \frac{1}{1+C} \Rightarrow C = 0$. Thus $y = \frac{\phi(x)}{x}$

Hence
$$y(4) = \frac{1296}{4} = 324$$

8.(100) Let $f(x) = \sin x + \cos x$. By considering the minimum and maximum value of

$$f(x) on \left[0, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{3\pi}{4}\right], \dots, \left[\frac{7\pi}{4}, 2\pi\right]$$

$$\begin{bmatrix} 1 & 0 \le x \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < x \le \frac{3\pi}{4} \\ -1 & \frac{3\pi}{4} < x \le \pi \end{bmatrix}$$

$$\begin{bmatrix} f(x) \end{bmatrix} = \begin{cases} -2 & \pi < x < \frac{3\pi}{2} \\ -1 & \frac{3\pi}{2} \le x < \frac{7\pi}{4} \\ 0 & \frac{7\pi}{4} \le x < 2\pi \end{cases}$$

So,
$$\int_{0}^{2\pi} \left[\sin x + \cos x \right] dx = \int_{0}^{\pi/2} dx + \int_{\pi/2}^{3\pi/4} 0 \, dx$$
$$+ \int_{3\pi/4}^{\pi} (-1) dx + \int_{\pi}^{3\pi/2} (-2) dx + \int_{3\pi/2}^{7\pi/4} (-1) dx + \int_{7\pi/4}^{2\pi} 0 \, dx$$
$$= \frac{\pi}{2} + \frac{3\pi}{4} - \pi + 2\pi - 3\pi + \frac{3\pi}{2} - \frac{7\pi}{4} = -\pi$$

Since $\sin x + \cos x$ is a periodic function with period 2π , $\int_{0}^{200\pi} [\sin x + \cos x] dx = -100\pi$

9.(4) For maximum number of common chords, we must have maximum number of common points. For y-coordinate of the point of intersections, we solve $4y + (y-7)^2 = r^2$

or
$$y^2 - 10y + 49 - r^2 = 0$$

This equation will have two distinct real roots if $100-4(49-r^2)>0$

$$\Rightarrow r^2 > 24$$

$$\Rightarrow r > \sqrt{24}$$

 \Rightarrow least value of [r] is 4.

10.(2) Since $g(x) = f^{-1}(x)$ so f(g(x)) = (x) for all x. Differentiating f'(g(x))g'(x) = 1.

Let g(1)=k, then f(g(1))=f(k)=1. Since f(0)=1 and f is continuous and increasing function so one-one thus k=0. Putting x=1 in (i), we get f'(0)g'(1)=1. But

$$f'(x) = 3x^2 + (1/2)e^{x/2} \Rightarrow f'(0) = \frac{1}{2}$$

$$\frac{1}{2}g'(1) = 1 \Rightarrow g'(1) = 2.$$